2,416 research outputs found

    The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil

    Full text link
    The critical-velocity behavior of oscillatory superfluid Helium-4 flow through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during which the frequency remained below 400 Hz, the critical velocity was a nearly-linearly decreasing function of increasing temperature throughout the region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi phase slips could be observed at the onset of dissipation. In runs with frequencies higher than 400 Hz, downward curvature was observed in the decrease of critical velocity with increasing temperature. In addition, above 500 Hz an alteration in supercritical behavior was seen at the lower temperatures, involving the appearance of large energy-loss events. These irregular events typically lasted a few tens of half-cycles of oscillation and could involve hundreds of times more energy loss than would have occurred in a single complete 2 Pi phase slip at maximum flow. The temperatures at which this altered behavior was observed rose with frequency, from ~ 0.6 K and below, at 500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203

    Experiments concerning the low-energy states of the O19 nucleus

    Get PDF
    Angular distributions have been measured for three groups of protons from the O18(d, p)O19 reaction, those leaving O19 in its states at 0, 0.096, and 1.47 Mev. Deuteron energies of 1.74 and 2.50 Mev in the laboratory system were used. The distributions of protons leaving O19 in its ground state and in its 1.47-Mev state are characteristic of stripping and indicate the formation of the ground state by an l=2 neutron and of the 1.47-Mev state by an l=0 neutron. However, the distribution of protons leaving O19 in its 0.096-Mev state does not lend itself to a stripping interpretation. It has been found that the γ decay of the 1.47-Mev state of O19, following the formation of this state in the O18(d, p)O19 reaction, proceeds mostly to the 0.096-Mev state. The mean life of the 0.096-Mev state has been measured by observing the decay in flight of recoiling excited O19 nuclei and is found to be 1.75(1±0.16)×10^-9 second. These observations restrict the likely assignments of spin and parity for the 0.096-Mev state to 3/2± or 5/2+

    Lifetime of the 0.119-Mev state of the N16 nucleus

    Get PDF
    The mean life of the 0.119-Mev state of N16 has been measured and is found to be 7.83(1±0.04)×10^-5 second. This state was produced by means of the N15(d, p)N16 reaction with deuterons having a laboratory energy of 1.76 Mev. The experiment involved periodically directing the deuteron beam onto and then away from the target. The lifetime was determined by measuring the decay rate of the 0.119-Mev γ-ray activity during the periods when the beam was off the target

    Simulations of Vortex Evolution and Phase Slip in Oscillatory Potential Flow of the Superfluid Component of Helium-4 Through an Aperture

    Full text link
    The evolution of semicircular quantum vortex loops in oscillating potential flow emerging from an aperture is simulated in some highly symmetrical cases. As the frequency of potential flow oscillation increases, vortex loops that are evolving so as eventually to cross all of the streamlines of potential flow are drawn back toward the aperture when the flow reverses. As a result, the escape size of the vortex loops, and hence the net energy transferred from potential flow to vortex flow in such 2 Pi phase-slip events, decreases as the oscillation frequency increases. Above some aperture-dependent and flow-dependent threshold frequency, vortex loops are drawn back into the aperture. Simulations are preformed using both radial potential flow and oblate-spheroidal potential flow.Comment: 18 pages, 6 figures, sequel to cond-mat/050203

    Delay Games with WMSO+U Winning Conditions

    Get PDF
    Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. We consider delay games with winning conditions expressed in weak monadic second order logic with the unbounding quantifier, which is able to express (un)boundedness properties. We show that it is decidable whether the delaying player has a winning strategy using bounded lookahead and give a doubly-exponential upper bound on the necessary lookahead. In contrast, we show that bounded lookahead is not always sufficient to win such a game.Comment: A short version appears in the proceedings of CSR 2015. The definition of the equivalence relation introduced in Section 3 is updated: the previous one was inadequate, which invalidates the proof of Lemma 2. The correction presented here suffices to prove Lemma 2 and does not affect our main theorem. arXiv admin note: text overlap with arXiv:1412.370

    A Systematic Extended Iterative Solution for QCD

    Full text link
    An outline is given of an extended perturbative solution of Euclidean QCD which systematically accounts for a class of nonperturbative effects, while allowing renormalization by the perturbative counterterms. Proper vertices Gamma are approximated by a double sequence Gamma[r,p], with r the degree of rational approximation w.r.t. the QCD mass scale Lambda, nonanalytic in the coupling g, and p the order of perturbative corrections in g-squared, calculated from Gamma[r,0] - rather than from the perturbative Feynman rules Gamma(0)(pert) - as a starting point. The mechanism allowing the nonperturbative terms to reproduce themselves in the Dyson-Schwinger equations preserves perturbative renormalizability and is tied to the divergence structure of the theory. As a result, it restricts the self-consistency problem for the Gamma[r,0] rigorously - i.e. without decoupling approximations - to the superficially divergent vertices. An interesting aspect of the scheme is that rational-function sequences for the propagators allow subsequences describing short-lived excitations. The method is calculational, in that it allows known techniques of loop computation to be used while dealing with integrands of truly nonperturbative content.Comment: 48 pages (figures included). Scope of replacement: correction of a technical defect; no changes in conten

    The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams

    Full text link
    The phase shift due to the Sagnac Effect, for relativistic matter beams counter-propagating in a rotating interferometer, is deduced on the bases of a a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by Sakurai, in which non relativistic quantum mechanics and newtonian physics appear together with some intrinsically relativistic elements, is generalized to a fully relativistic context, using the Cattaneo's splitting technique. This approach leads to an exact derivation, in a self-consistently relativistic way, of the Sagnac effect. Sakurai's result is recovered in the first order approximation.Comment: 18 pages, LaTeX, 2 EPS figures. To appear in General Relativity and Gravitatio

    A direct kinematical derivation of the relativistic Sagnac effect for light or matter beams

    Full text link
    The Sagnac time delay and the corresponding Sagnac phase shift, for relativistic matter and electromagnetic beams counter-propagating in a rotating interferometer, are deduced on the ground of relativistic kinematics. This purely kinematical approach allows to explain the ''universality'' of the effect, namely the fact that the Sagnac time difference does not depend on the physical nature of the interfering beams. The only prime requirement is that the counter-propagating beams have the same velocity with respect to any Einstein synchronized local co-moving inertial frame.Comment: 10 pages, 1 EPS figure, to appear in General Relativity and Gravitatio

    Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25

    Full text link
    We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final version, with new data in Fig.
    • …
    corecore